NONSTATIONARY EQUATIONS OF NONLINEAR ELASTICITY
THEORY IN EULERIAN COORDINATES

S. K. Godunov and E. I. Romenskii UDC 539.3 +517.945

In this paper we study a system of differential equations which describes nonstationary processes of
nonlinear elasticity theory in an isotropic medium. Such a medium is characterized by an equation of state
E=E(, L, I;, S), expressing the internal energy density E (per unit mass) on the deformation tensor in-
variants I, I, I; and on the entropy S.

The "viscoelastic" Kelvin—Maxwell terms are included in the equations in order to describe plastic
deformation processes. It is necessary to introduce these terms in order not to violate the continuity
equations. The satisfaction of the law of entropy increase during viscoelastic processes imposes restric-
tions on the equation of state in the form of certain inequalities. We show, in what follows, that these in-
equalities are always satisfied if the equation of state E=E (I;, L, I;, 5) is such that the system of equations
is hyperbolic. The main content of our paper is the study of thermodynamic identities, the composition
of the characteristic equation, the formulation of the conditions for hyperbolicity, and the reduction of the
system of equations to the symmetric hyperbolic form due to Friedrichs. We have been unable to find in
the literature a system of equations written in a form satisfying these requirements. Therefore the first
items in our paper are concerned with a justification of this form.*

The invariants p, D, and A of the deformation tensor, which are used in writing out the equations of
the characteristic cone in a system of coordinates attached to the principal axes of the deformation tensor
(Sec. 5), make it possible to see, when E (p, D, A, 8) does not depend on D and A, that the characteristics of
the system inquestion reduce to the characteristics of the hydrodynamic equations.

1. Conservation Laws and Murnaghan's Formulas, We assume that the state of a continuous medium
is characterized by the distribution of the density p, the internal energy density pE,. the entropy density
pS, the velocity vector fields with components u; (i=1, 2, 3), and the stress tensor with components oji
(0§ =0ki» 1, k=1, 2, 3). The medium as it moves must then satisfy laws for the conservation of mass,
momentum, energy, and entropy. We omit any consideration of heat transfer processes. Terms which de-
scribe entropy growthduring relaxational viscoelastic processes will be taken up later. The conservation
laws for the case in question, written in differential form, reduce to the following divergence equations:

at + azk =0
dpu; 0 (pugu, — ;)
ot + Dz, =0
dp (B 4+ llzuiui) + 9 [Pu;; 4+ 1/2”1”'1) - uicik] —0
ot oz,
6PS 6pSuk . 0
ot oz, -

To describe the state of the medium it is also neceSsar.y to include the deformation tensor &ji or the
metric tensor associated with it, ik = Oik 2 gk 'Using the first prineiple of thermodynamics, we can,

*1L. I. Sedov has called attention to [1], wherein a study is made of the complete system of linear equations
for small perturbations in a viscoelastic liquid.
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through the use of the equation of state, relate the stress and deformation tensors by means of
Murnaghan's formulas (see [2-4})

(0B g, OE
iy =P ey, T

0 =PonetH8ik— Zeq|
EZE(In 12’ IS» S)

Here p and E are assumed to be known functions of the deformation tensor (p, is the density of the
undeformed medium) and the I are the invariants of the deformation tensor

I = g+ 8y + 853

I, = 811 81p Eazz €93 833 8g1|
: €1 89p 830 g3 €13 €11
€11 B1a 813
Iy =ley 8y &g

€31 E3p €33

Thus E is a symmetric function of the characteristic values of the deformation tensor. For a function
of the deformation tensor it is necessary to distinguish differentiation with respect to the components £
and Ejis otherwise, after differentiating, we would have twice as many quantities.

Subject to these assumptions concerning the equation of state, the stress tensor ¢y turns out be
symmetric.

It is evident that Murnaghan's formulas are tensorial in nature (in the present notation this is only
true relative to orthogonal transformations of the coordinate system). If the axes of the coordinate system
coincide with the principal directions of the deformation (also of the stress) tensor, then

eix =0 (%K ei=e; .

— . oF 1 oF
i = 0 ik, Gy =D ('1 — 28{) -5; =p V1——_——~——— Se A10— 28’5)-1/2] =G;

(e=po ¥V (1 —2e) (T = 2&2) (1 — Zeg))

For the parametrization E=E (a4, a,, a3, S) of the equation of state, where aj = (1—-2 si)‘i/z, the
Murnaghan formulas reduce to the following form:

G; = paiE'ai

or, taking note of the fact that p =py/2,a,0a4

— b
G1 - 2203 Ea1 (alv aZ? a37 S)

Pe ~ .
Sy = o Eg, (a1 ag, a5, S)

_. P
53 - T1as Eag ((117 Qg O3y S)

Use of the parameters a,, a,, a; makes it possible to give an intuitive derivation of Murnaghan's for-
mulas for the stress tensor. If a volume of the medium in its undeformed and unstressed state occupies
a rectangular parallelepiped with edges (AX();, (AX)q, (AXg)g, then, after an adiabstic deformation, it occu-
pies a parallelepiped with the edges Axj=aj X (A xj), l.e., ay, a,, a; give the expansion coefficients along the
axes. The forces acting on the faces of the parallelepiped are as follows:

Fy = 0,Az,Az5 = 0,258, (Axy), (Azy),
Fy = 0,ArAz; = 0,050) (Azg)y (Azy),
Fy = 0,A2;Ax, = 03018, (A21), (Azy)e

Subjet to the variations Sa; of the parameters aj, these forces produce through the displacements aj
an amount of work equal to

Fiday (Azy)y + Foba, (Azy)y + Fybay (Axy), = (0,00.0.05 +
+ 0oty 88505 + Ga010,8a5) (Azy)y (Azy), (Azg)y

which goes to increase the internal energy
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(0Az,A2,Az5) E (a1, 0y, a5, S) = pg (Az1), (Azy)g (Az5)oE (a1, @5, @5, )
Po (Azo (Aza)o (Azs)o OF = araaay (51 22 46, 822 1, B0 ¢
X (A21)o (AZs)o (Azg)y
Cancelling the (Ax;)y (Axy), (AX3)y, We arrive at Murnaghan's formulas

p0E = 0,8,0560, + 08500, 4+ 040,80,

_ Po OF _ po_OE __ po OE
azag da; ' 2 asa1 da: ’ 3™ hag Oas

As usual, Eg has the meaning of temperature; therefore, in the parameters ay, ay, a3, and S, we have
the following thermodynamic identity;

a

a2as asas
SE (ali gy 3, S) == 616111 +

) o0 6,8a, +

;‘:” G40 + T8S

In the sequel, it is occasionally convenient to use, instead of the parameters aj characterizing the
principal axes of the deformation tensor, the parameters

a.
P . i
0= d;=1n

¥ wians
and also the invariants p
D =1, (d2 + d2 - dg¥), A = dydyd,
The invariant p (density) characterizes the degree of compression of an elementary volume during

deformation while the invariants D and A characterize its change of shape. In the case of small deforma-
tions the invariant D coincides with the quadratic invariant of the deviator of the deformation tensor

D =1y l(eg — g (g + &5 4 &3))% -+ (8 — Y5 (1 + 85 + £5))%+
AH(es — Mo (er 4 &+ £3)21 - O (| & |34+ | 85| ® + | &5 | ?)
For small deformations the quantity A is a quantity of the third order of smallness, and in linear

elasticity theory the dependence of E (p, D, AS) on A is not considered.

For reference we give the expressions for the principal stresses, which follow from Murnaghan’s
formulas, wherein we assume the parametrization E(p, D,4, S)

6y = — p*E, + pdy Ep — Y50 (dy? + ds® — 2d,®) Ea
Oy = — P?E, + pdoEp — /30 (dy? 4 di® — 2d5%) Ea (1.1)
o5 = — p2Ep + pdsEp — /30 (di® + do® — 2d5%) Ea

It follows from these formulas, in particular, that the so-called mean pressure
- 1/‘3 (611 + G2z + 033) = — Y5 (61 + 63 + 63) = P*Ee (0, D, A, )
may be calculated from the usual formula p=p? E, (0, B) for the pressure in a gas.

The values d;, d,, d3 can (to within their order) be determined from the invariants D and A as the
roots of the cubic equation

@ —Dd—A=0
It is well known that all the roots of this equation will be real if and only if the inequality
(D/3PF>(A]2)2
is satisfied.

_ If p, dy, dy, dy are known, then any other parameters defining a deformation may be calculated from
them. Thus, for example,

2= "1/ po7p, & =1 [4 — e ¥ (0 /pg)]

We assume the equation of state E=E (p, D, A, S) to be such that corresponding to given principal
stresses 04, 0,, 03 the corresponding principal values €4, €,, €3 of the deformation tensor can be re-estab-
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lished with the help of the Murnaghan formulas (1.1). This assumption is needed to determine the unstressed
ninjtial state" for each element of the deforming medium relative to which the deformation is calculated
(see [5], p. 67).

2. Equations Describing Time Variation of the Deformation Tensor. At t=0 let the metric deformation
tensor gy ° = 6; 72 eik define the deformation which must be produced in the neighborhood of each point
in order that the stress tensor at the point be zero. The tensor g;.° defines a metric (element of length)

dS? = g;,° dat daok

A moving material point with coordinates x! at time t will have coordinates x°i at the time t =0,
2% = 2% (a1, 22, a8, 1)
Since along the trajectory of a material point the initial coordinate of the point is constant, we have

dzoi azsi 8x°i
—me L k
= tU

gt =0

Differentiating this equation with respect to xj, we obtain

2 (9t | Gut art
dt \ 327 | 7 o 9zt

We determine the metric tensor gjr= 6;—2 €y} in Such a way that the element of length dS of a
given moving material vector stays the same. We obtain
dS? = gy, datdzt = g, da® dz°"

Therefore

o 9z°% §2°f
B = 80 5T o0

and, consequently,

dgi; o d [82°% 02°F « 9z°% 4 [92°f _ o 9z°% 3z°P guk o 9r°% 9z°P 5uf
@ ok (BH a1 5% agt di \ 5 But 5 o oat 8P o oF o
Thus
ag;; u” u®
at — fia Py — gja "a"z_L

We note that since the behavior of the medium is being described in an orthogonal cartesian coordi-
nate system xy, Xy, X3, then x*=x,, ul=uj. Now, using the definition of the deformation tensor g4j= 1/2 (5ij“
gij), we obtain equations for the time variation of the deformation tensor components

dey; 4 oy 1 fuy
0 = 7 B — 2ow) 72 - (Bja — 205 5, 2.1

More detailed information concerning a kinematically deforming medium is available in L. I. Sedov's

books (see, for example, Eqs. (6.12) on p. 120 of [6]).

We now explain through an example involving small deformations a method of introducing into the
equation terms describing the relaxation of tangential stresses. Later on, we assume an extension of this
method to finite deformations.

In the case of small deformations (Sij «1) the Egs. (2.1) assume a form well known in linear elastic-
ity theory

de; 1 (0w, Ouy 0
dt 2 (6:5]- dz; ) -
For small deformations we can take the equation of state in the simplified form

PoB =)y h(ery + 82y + £39)® + 14 (55850)
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from which it follows that

6ij = M(e11 + &gy + eg3) 63 + 2u8y; (2.2)
and, consequently, that

doy; du, ou; du;

re 6—a:k_6ij+u('c9_z?+ 5?)

In a viscoelastic medium, for example, in metals in the presence of sufficiently large shear stresses,
it is necessary to introduce into the equations for doij/dt terms proposed by Kelvin, Maxwell, Voight, and
others, which describe relaxation of the stress deviator. After the introduction of these terms, the equa-
tions in the linear case can be written as

ds auj

" du du, 65— Y3 (0} 632+ 0a3) 8
L S, Yl 27 RARCI U D 7
7= bttt n (555 7

k4

Since the T3 and the ¢y; are related through the Egs. (2.2), the equations we have written out for the

0jj are equivalent to the following equations for the €jt

dat 2

az]- dz; T

de; q [ du; du; } * g5 Ya (e + en 1 &x) 85
Here 7 isthe characteristic relaxation time of the tangential stresses. In these equations the terms
in the square brackets describe the variation of the deformation tensor with motion of the medium; the re-
maining terms in the right-hand sides of these equations give a phenomenonological account of the time
variation of the "initial" state relative to which the deformation tensor is calculated. There arises the
natural desire, even in the case of nonlinear viscoelasticity, to write

dey; 1 u 1 u £, — s (e11 + En |- £3) §;;
J J
g = 7 (Bia — 20i) axa + =5 (8a — 28j0) azj : T

Here, however, an important circumstance exists which determines the method for writing down the
relaxational ferms. When relaxational terms of the type

85— /3 (€n - 822+ €x8)
Pij= — T

are not included in the right member of the equations for the €jjs the continuity equation
gp , 00Uy, k
T tam, 0
then follows from the Eqs. (2.1).

The density p may be expressed in terms of the metric tensor g1 and the deformation tensor Eij
through the formulas

p = po V det]gs;] = po ¥ det6;; — 2e]
From this it follows that

Eiafey; = — pb;;
i.e.,
(83 — 2€ia) Peg; = — 08:5, (B — 2e43) Peje = — pd;;
We now multiply each of the Egs. (2.1) by the corresponding Pe ij and add to get

dp

0=2

1 . Ouy i Ouy _
— _z-p‘ij (Gia — 2844) 6_1; -5 pzij(ajz — 285q) E —
dp , 90y,

dp A g M Lo e dp W00 O
=7cl—t—+—.‘2.—pﬁj°‘6?;+_2—p6“6:ci T dt +pazk—“ at + z,
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It is now clear that the relaxational terms must be introduced in such a way 80 as not to violate the
continuity equation; to this end the relations

Pe, P15 =0
must be satisfied. (Summation here with respect to i and with respect to j is to be understood.)
It is obvious that in the case of small deformations
0e;; = 015+ O (2p4%)

this relation assumes the form
Pu + Pas 4 @z =0

It is satisfied automatically for the Kelvin relaxational terms

&;;— Ya (€11 + 822 - 13} B,
Pij= — -

When considering finite deformations, it is natural to choose the relaxational terms in the following
way: .
@15 = — [81) — EpaPepy (Or + Pew + Pe) H8ijl 771 =
1 [s.. L. % 5.
- W [Si] B 281] + psu + piza + piu 5”}
This definition, as may be readily verified, is invariant with respect to the choice of the orthogonal
coordinate system and satisfies the condition Pe i ¢13=0. Moreover, 7 may be an arbifrary positive func-

tion of the parameters defining the state of the material. In particular if 7 =« for a tangential stress
intensity

“]}? V (611 — 632" + (622 — S35)° + (Ga3 — Om)® + 203° + 265" + 263:°

less than o,,and 7 =7 for greater intensities, we arrive at a viscoelastic medium which possesses, for
small 7, ail the fundamental properties of a plastic material satisfying the von Mises plasticity criterion.

As another example, we present a more general form of the relaxational terms, which in the princi-
pal axes of the deformation tensor (Sij =0(1 #j), €4 =gy, have the form

€ £; 1 1 -1
i = ~:—i[ei - (—%ps, + o et j—:psaxr—lps, + = P+ —%pes) |
In this case also, it is easy to verify that for arbitrary 7y, 7, 73 (We again assume these to be posi-
tive) the condition p eij Pij =0 is satisfied, which implies the satisfaction of the continuity equation. This
form of the relaxational terms makes it possible to model the process of incomplete plasticity, wherein the
intensity of the tangential stresses may exceed 04 on some areas and not on others. Moreover, we can
assume that part of the 7y, 7y, 73 is equal to « or some very large time T > aid a part equal to a small
time 7;. The previous version of the relaxational terms may be obtained from that selected here by putting
T{=T9=T3=T. Putting »

de, i ou 1 ou
7 =7 G — 2e) g+ 5 (B — 2650) 7 + 9y
. 2

we decompose the deformation rate tensor dey; / dt, usually called the total deformation rate tensor, into
an elastic part dsi-e/d’c and into a plastic part deijp/dt:<ﬂij. The requirement pegj ¢4j=0 represents a
statement to the effect that plastic deformations occur without change of volume (see, for example, [7]).

In calculating elastic-plastic flows, Wilkins [8] managed to satisfy the von Mises criterion through
a rather arbitrary process of normalization of the deviator. Such a normalization leaves unclarified the
matter of how to verify that the laws of thermodynamics are satisfied. Apparently, the introduction of a
dependence of the relaxation time on the tangential stress intensity may lead automatically to almost an
exact satisfaction of the plasticity conditions. Validity of the law of entropy increase for a given way of
writing the relaxational terms will be verified in Sec. 3.
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We make several remarks concerning the compatibility conditions for the model in question. It is
well known that we can associate with each metric tensor gy = dj—2¢ i the Riemann— Christoffel curva-
ture tensor

1 [ 8y g, o%g, 028,
R; —_ e v R {d _ }_ N .T . poI")\kP, .
e 2 {6zk az*  gxzfodt  exlaz ' gxtadt g7 e, i Lo uk +- 8710 Pr i

Here Ty ik are the Christoffel symbols

1 (3€ir o8y, _agik)

Trywe = PRI ozt az"

A nongzero value of Rik?\u characterizes the "incompatibility” of the metric deformation tensor with
Euclidean three-dimensional space. In three-dimensional space the tensor Rik?\u has only six different

nonzero components; thus, instead of the four-valent curvature tensor Rikay » We can consider the two-
valent tensor RI# with the same nonzero components

Ry = g" Riprp
or the Einstein tensor
Gip =Ry, —h8uR  (B=g"Ry)
(see, for example [9, 10]).

The reader interested in the relationship between the curvature tensor and the density of dislocations
should consult §§9, 12, 14 of the supplement to [11], and also [7]. These papers are devoted to the linear
theory of elasticity. The role of the curvature tensor as the incompatibility tensor was considered in [4].

We consider next how the tensor Gy varies with the time when the variation of the deformation ten-
sor is described by the equations
de; 1 du,, 1 ou
-dt—k = o (81 — 28ia) 5z, + 5 (B — 2¢1a) 5:7: + P
If we set the relaxational terms ¢j =0, it is then easy to see that the motion described by these
equations can be regarded as a continuous variation of the coordinates in the initial space with the metric
gjk°- In addition, all the tensors transform according to the same rule. In particular

dg. ouy, du,
e -+ gma; ‘I-gkagg =0

Therefore for Gy it is necessary to write
dGy, du, du, .
@ TGy +Oag =0

Finally, this equation, being a relationship along the characteristics (streamlines) of the elasticity
theory equations formulated above, can be obtained from these equations through differentiation and taking
corresponding linear combinations. For the case in which the relaxational terms ¢yj are nonzero, the
equatfons for the Gy will have right-hand sides* &;),, where

dG,, du, du,
- +Giaa-x;+gka5;i‘ =y,
1 4 . agq) . an) a2q)x o aZ(P x " o x
(Dik - (—2— 8g g8 — (Sxté)\kgaﬁ> {am" 60;57‘ T oz* ;::9 - az* oz* + Az (;zp} + 8 TnlL, wt g“!*I‘MJIm, e
— Ty px — 8T, 5 — Yo £ Tixlla, ap +-
4+, gikg"lgm‘rﬁxﬂa, ws — s gikgx%gﬂul“;\‘aﬂa,w + s gikg*’g’a*‘f'{'i,aﬂa, A
+ 284 (Te, 5il's, ux — T, 1xl'p, pi) @8 — gapg* g™ X
X (Fa. MFB. wy — +a, MPB, p-x) ‘P“e + 2CPKP'inkP~ - Zgikq)up'RxP- + R‘Pik

a‘pra 6(])7,3 . a"pa(}
azP oz® oz

Hr. ap =

*In the equations for the &j, appearing below, we have used the contravariant components gik of the metric
tensor and the Christoffel symbols I‘ﬁ'n corresponding to them.
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In the theory of an elastic crystalline medium the nonzero curvature teasor Rik?\# , and the tensor
Gjk associated with it, essentially characterizes the nonzero density of dislocations (see [7]). The terms
¥k, appearing in the right-hand sides of the equations for the Gjj, can be treated as a characteristic of the
dislocation "source" density in the model of the viscoelastic medium cousidered. A study of the curvature
tensor lies somewhat outside the scope of this study. We therefore limit ourselves to the brief remarks
made here.

We remark also that the divergence of the contravariant components of the tensor Gik jg equal to
Zero,

VG = 26 4 TLEM 4 TG = 0
(see [10], p. 624).

3. The Complete System of Equations, Their Transformation, and Thermodynamic Identities, The con-
cepts formulated above lead to a system of differential equations describing the behavior of a continuous
medium with time. This system consists of ten equations in ten unknowns

€11y €29 Sgar E1gs E1g> Eazy O, Up, Us, Ug

(B4 hupy | 0 lowy (B aup,) —ug,l
ot + L
dpu, 3 (pugu, — 65
ot oz,
oe; oe; ou

. + 173
0 PRI P S PR
5 T U 7z, 3z, + 240 3z, P (1=1,2,3)

=0 (3.1

=0 (=129

(i) = (12), (13), (23)

In this system we have not included the continuity equation and the equation for the conservation (in
crease) of entropy,since these equations are consequences of this system. Derivation of the continuity
equation was given in Sec. 2. Our next concern is the law for the growth of entropy. We remark also that
in the sequel (see Sec. 4), instead of the laws for the couservation of momentum

dpu; 3 (pueguy, — 55)

=0
ot dz,

it is necessary to include in the system the nondivergent Euler equations for the velocities

which follow from the laws for the conservation of momentum and the continuity equation

du,; fu,; a6, Opu,; 3 (puu, —GS;,) dpu
p_.l..{._uk.__l)____i: it (p1k ik _ui(_a.p_ Tk =0
ot oz, oz, at oz, ot 8z,

and also, in place of the law for the conservation of entropy,

dpS | OpSuy

209 =0
at 6xk

we use the equation

as __ as a8
= Ty =0

which is obtained from the preceding equation and the continuity equation

dS _ {3pS | OpSuy ap | Omyy
p‘d‘t"‘(at + %, )—S('a—t"+ 5, ) =0

We can write the system of Eqs. (3.1) in the form
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aL oMk 6H"’ ghkn
7; q; n qi kA" . .
+ _az___k + + A :, —t hqi —51? = (t=1,2,..., i) (3.2)
oL,, aM’f] H"] ah’m
T M =, +- 7, =fi (G=1,2,..70)

where L, Mk Hk bk are arbitrary functions, and A and f are arbitrary functions of qy, ..., qj , ry, ...,
, where Hk and hk? are homogeneous functions. The nature of the homogeneity must be such as to imply
the Euler identities:

a:Hy + r,-Hf.‘J, =H*, qhg =0, r,-hi‘]_" = B (3.3)

The choice of the variables q; and r; and the generating functions will be described later; for the
present we show that if the first ij equations of the system (3.2) are multiplied by the corresponding gy, the
remaining j, equations by the corresponding Iy and if the results are added together, then, using the homo-
geneity equations (3.3), we obtain the conservation law

8 (9 Ly, + 5Ly — D) 6(q1Mk + 7 M" MY
gt + az,, = ijj
The variables gj and Iy , the generating functions L, MK, mk, hkn and the functions A" for the system

(3.1) have the form
90=1/ES, q—-ul/ES (1—123)

(E SES— 4 ’L)péu_[_pEEu}

|

(E SES_‘ s 1)95;,'{— pESn]

)pixs + pEEu}
wa,
(E - SES - ;’L‘) Peyy + pEEu]
re = -E?_ [(E SES - ‘1‘2‘) Pesy + pEEn]

1 i1 [
L=—ﬁ§(E—M%—Tryw+%ﬂwm+mJ—@am%

k -
M =ul = — quqoL
= Pnh et gy g Qrachgurs g oprg s gere o gans

g0 ! qo ! g0 ,
Bl DT pia_ @Ua2qeTs gap Qs — 20875 gag QML
- g go ! q0 ! q0
B — lIsrl , h1% = g1l — gqal's — qals
qo
B — g 2qwre , R = g , B3 = qars — 2gaTs pet =
) % a0 ’ g
525 — qar's — q1l's — qars % LR qsrs
qo ’ 0
—2 — 2q2r T 3rs — Q176 — Qar's
Rt =_q’2_qjﬂi, hoe =j_=_’“?_‘lﬁ, B8 = — -‘{;o—“, B3 —_;l_*_._‘l;_oi_
% . 93 g3 . 9273
h 0 ’ h D

A = er i.e., At = €11, A% = €325 43 = es:’;s At = 2eq5, A5 = 2613, A8 = 2853
fr =P fo=Pog fs= Psn f1 = 2P12: f5==2P13, fo = 295

(the form of the Py was considered in Section 2).
The conservation law can then be written as follows:
3pS 0pSuk _ P
5t 5
Q=- thi]-(PiJ' +pH(E — SEs — t/y weity) Pe;, Pij] = — E:,-_,-(Pii
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Here we have used the equation Pe i ¢ij=0, which assures satisfaction of the continuity equation
(see Sec. 2).

Thus the form of the equations shown is suitable for the study of thermodynamic relationships, and the
variables gj, r; represent "integrating factors" by which it is necessary to multiply the equations of the
system to obta]m the law for the conservation (or growth, if Q > 0) of entropy. Analogous and substantially
simpler forms of the systems of equations of mathematical physics were, in fact, considered in [12-15].

In these papers it was shown that the hyperbolicity of the systems in the Friedrichs sense is a consequence
of the canonical forms used for writing the equations.

The reduction of the equations of nonlinear elasticity theory to a "thermodynamic® form of this type
was undertaken initially with the same goal in mind, namely, to prove the hyperbolicity of the system and
to obtain estimates of the energy integrals for the derived solutions. However, after such a reduction was
carried out, it became clear that in this case the symmetric hyperbolicity of the system is not an automatic
consequence of the form (3.2). The point is that because of the diverse character of the homogeneity of the
functions hE inthe variables g; and Ty the conservation law for the system holds but the matrices

. ((Mq,q,,,w% ot Ao - hap A7 VMo, +Hap 4 AR +h"”A">)
(Mrjq, + Hy g, + i) (My v+ Hep + ARy

in the quasilinear way of writing the system (3.2), namely,

(e )3+ 2 ()= ()
are not symmetric.

This result has lead to the necessity of using an altogether different method for calculation of the
characteristics and a reduction of the system to a symmetric hyperbolic form, namely, one based on broad-
ening the initial system by including equations obtained by differentiating the Euler equations for the veloci-
ties. We describe such a symmetrization in Sec. 4; for the present we study the conditions the equation of
state E (ay, ay, a;, S) must satisfy in order that the relaxation of the tangential stresses, described by the
form adopted for the Kelvin terms @i will lead to the condition Q > 0, i.e., to the law for the growth of
entropy.

In a system of coordinates whose axes are directed along the principal axes of the deformation
tensor, we have

Eaii EEsi:aizEai’ E.. =0 G

1]
Therefore, in this system of coordinates

i
Q=- E:i].q’ij = TE‘i[ < Pe + Psa + ipla) X
1
2

1 1 1\ ang BEa, — BBy,
X (‘:,‘;‘ Pes + 70 + ';Ps;) :] = [nr (a* — a2’) “‘—‘—‘“'“al T+
aF askE —unE, [ a? azz as? \-1
. o 7.2\2 _LJ e _—2 2 ‘_.____ o —_
+ e ( e e B - (aa ;%) a32 p—— } E7 T )

For Q to be positive it is sufficient to have the following inequalities satisfied;

alEa £,
_____‘__.__._’> X

a3 — ag?

azE

as as>0

az* — az?

all,

ag? —a1

(lx>0

In Sec. 5 it is shown that these inequalities are a necessary consequence of the hyperbolicity of the
system in question.

4. Reduction of the System to a Form Containing Second Derivatives of the Velocities; Determina~
tion of Conditions for the Characteristics to Be Real. As a starting point for further study we take the
system described earlier

mn ri -
O T T El -1

877



a % [(6mz — 2&m2) 6 + (807 — 224)) 6.‘lm] az; + Pmn 4.2)

as 1
o =t =g 0 (4.3)

We apply the operator d/dt to each of the Eqs. (4.1) and into the result we substitute the derivatives
with respect to 8 /9x;, obtained from Egs. (4.2) and (4¢.3). We carry out this reduction in detail.

Noting that

d 8 8 8 0 %y 9 4 8 | Oy 3
= @ = 99w T e 5w T B a0 0 T 7 e (4.4)

we differentiate Eqgs. (4.2) and (4.3) with respect to x;:

9 de 1 Pu, o, de dg P
oo = LBt — 2om) 8 - Bt — 200 8] 5 — gt (3 52 + B o) + ws)
1 1 .
a dS _ Ton
o oz
To Eq. (4.1) we apply the operator d/dt, using the commutation rule for the operators d/dt and 8/ axy

d\2 aski 9 e, 96, g9 4s +
p de, dz; di a8 6:: dt

dc,; du, 38 E)
. Tmn ' 23 k op
+as az Tz, + 35 bz, 9z, o, T WA 4.6)

_._‘Z_( 95, ) B d (acki> as _ df,

e, | 6z,  di \ 95 = Tar

and we replace the second and third terms by their expressions (4.5). To simplify the writing we also intro-
duce the notation a X, for the following tensors:

kl

a
Jl 1 le [(‘Sml 25ml) 6.1'1: + (Gnl - 23111) 6.7'm] =

a6 1 ds
= 2 (Gml 28,m)) aakz 5 (Bnr — 23nl)58_k1' =

= /50 (8kx — 2&xa) (Opr — 28p1) (Eeyyep; -+ Eegyeje) —
— P81 {Okx — 2exa) By, — POy (8at — 2ea1) Ee; —p (861 — 284) Ez,-i (4.7)

Using an orthogonal system of coordinates, we do not distinguish between covariant and contravariant
tensor components. The indices. ij inthe tensor ale are raised merely to distinguish their role from that

of the indices kI in the successive formulas and to make these formulas easy to read. We note now that

1 4 6ul 1 3 ’Bzul B 1 i 6ul
o %oz, 0z, + 5 au Fz;0z; 2 (e + ai ) 9z 8::: A”az az;
We denote by Akl the tensor symmetrized with respect toi,j
A= @i+ am)/2p 4.8)
As a result, the Eq. (4.6) may be rewritten as
d &u, 1 85, [Bul( ) 6q>mn]
A - : S _ —
(dt) “6::: az; p 08, |Oz;\ ™ az 7+ 8im dz; oz,
1 3% % i acki ou, aamn _Lask ou, ﬁg__
T Tp 98 bz, ' p Oe,, 0z; oz, p 88 dz; oz,
1 d [ 0%\ %, 1 @ (a"ki a8 _ 1 oy 6.._6__ui iy 4.9
T dt ( 6amn) oz, p dt \ 85 J oz; p dt + 0 oz; di (4.9)

the last term on the right side having been obtained with the help of the continuity equation
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o dy 4 By

8ij oz; dt ~ p dt df

We now express the coefficients d/dt (8 o/ 0 &ryp) and d/dt (5 0j /08) in terms of g4 B and duj /8%
with the aid of Egs. (4.2) and (4.3).

If in the system (4.1)~(4.3) under study we replace the first order Eq. (4.1) for uy by the resulting
second order Eq. (4.9), we may reduce the latter to the following form:

At . idv 4.1
(o) e—A" g~ B~ r (4.10)

dv k Ou
=0 55;*?'(9

Here

Uy €33
U= u2 ’ V= 812
Ug €13

Al are the third-order square matrices 3 X 3
A A A
47 = A50) = | A3 A% A
A3 A3 A3

BK are rectangular matrices of order 3 x7
B* = B* (v, du/ 42)
ck are rectangular matrices of order 7 x3
C* =C* )
On the right side of the system there appear the vectors F and ¢, of dimensions 3 and 7, respectively,
F=F(@,duldtduldz), o¢=¢®

We obtain from Egs. (4.7) and (4.8) an equation expressing the matrix elements AEZ in terms of

derivatives of E with respect to the deformation tensor components
Ap¥ =y (Bpa — 28a) (81 — 28p) (Ef-ais[sj + Eﬁai"jﬁ + Eiajipi + Esajeip) -
— Yo (81E e, + S1:Ee,;) (Ska — 28ka) — Yo (BkiBe st Biikle, ;) (Bra — 281a) —

— Y (Eeyy + Eey) (B — 285) (4.11)
From this equation there follow the symmetry relations

At = Aydt = Ayh

In calculating the characteristics of the system (4.10) it is necessary to keep in mind that inthe
characteristic equation only coefficients of the highest derivatives must appear, i.e., coefficients of the
second derivatives of the vector u and of the first derivatives of the vector v. Let Ip be unit matrix of
order p Xp and let © denote the expression w+u; §; (w, §; are the components of the wave vector or of the
vector normal to the characteristic surface). The equation of the characteristics has the form

Qy — B AY — E,Bi ”
0 . qr |=©+uk) detf(o+ug)l — 4| =0

The factor (w +ui§1)7 in the characteristic equation shows that the streamline is a multiple charac-
teristic. For arbitrary fixed &) the sixth degree equation
det | AUEE; — (@ + uii) 5] =0
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has, on account of the symmetry of the matrices AY, the real roots £ (w+ujépi

1t is evident from this that for the system to be hyperbolic, i.e., for the roots w to be real, it is
necessary that for all &) (§2+£,2+ £4% #0) the third order matrix AlJ ‘Eigj be positive definite.

In the sequel we supply various equations for calculating the elements Ali{j in a system of coordinates
connected with the principal axes of the deformation tensor (Sec. 5) and we show how the system (4.10) can
be reduced to a symmetric hyperbolic Friedrichs-type system of equations of the first order (Sec. 6).

5. Calculation ofthe Elements of the Matrix Allg 1 inthe Principal Axes ofthe Deformation Tensor. We
show that in the principal axes of the deformation tensor the matrix A = [|A ij Il has the following form:

L, 0 0 | 03N, 0] 0 0 YN,
0 e}, 0 |YNg 0 0} 0 0 0

0 0 M, 0 0 0[N, 0 0

AL A2 Aw 0 TN, 0 M, 0 01 0 0 0

j 4| (An Az A%) UNg 0 0 {0 L 0{ 0 0 N,
A% AR AR 0.0 0 {0 0f%My 075N, 0

0O TN 0T 01, 0 g

0 0 0 10 0N 0 e, 0

SN 0 0 L O YN, 010 0 Ly

where

E' a aaE as

Ly = 0*Epe, M= (a,0,05) /”—z_aaz—
azEa! —_— aaEa2 }

ag? — ag?

N, = 283 [Ea:as - (5.1)

Equations for the remaining L;, Mj, Nj are obtained from Eq. (5.1) through a cyclic interchange of
subscripts. In terms of the parameters p, D, A, dj the coefficients L,, My, N, are expressed as follows:

L, = 20E, + 0*E¢o + (*/s — 1) Ep + /3 (2d, — D — 3dyds) Eé +
4+ d2Epp +(Ajdy 4+ D 3% Ean — 2pd1EpD—
—2p(A/d1-l—D/B)EPA—1—2(A—|—d1D/3)EDA

_ 2da—ds) Ep—diEy 5.2
M, = ezd:___e;i, 2 (6.2)

Ny =20E,+ 0*Eg — Y/3Ep 4 %/3(2d, — D) Ea + AdEpp +
DA 2
+ (48 — 52— D) Bus + dipEon + 0 (5 +5) Eoa +

2ds __ g .20z 2d; — 2ds
+ (% dlD - A) EDA _ dge £l3e E _ dse dze dlEA

20 _ a0 T Tad _ ah

In the principal axes the characteristic equation assumes the form

LiE? + et ME,? 4 e M ,E? — QF AN NEiEs
0 = [Ngt:t: MM E2 - L2§22 + ¥ MLES — Q2 N&:ta
Notagy N1Est, €24 M E,% - e M B2 - Lgky? — QP

We recsll that © = w+uy &y +usé, +uy §;.

The condition of hyperbolicity of the system requires the matrix to be positive deﬂnite, the roots of
the matrix being Q2. In particular, for arbitrary &,, &,, £; not all zero, the sum Lyé,* +e?dy Mgk, 24e2d M,
must be positive, i.e., for hyperbolicity L;, M,, M; must be positive. We recall that in Sec. 3the inequalities

alEa tl:;Eas — a’Ea. . (’L\)z/:
az;— a32 o \-_—) M, >0, ag? —a®>  \Po M,>0
akE, — ok, ¢ \)’/s
a® — a7 _(P_o M3 >0
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guaranteed satisfaction of the law of growth of entropy for relaxation of the tangential stresses. In the
linear elasticity theory case it is assumed that the deformations are small, i.e., in every case d;, d,, dg
may be regarded as small (e2 LIPS 1, p & py), and the equation of state is given in the form

00E =)ok (811 + B + £33)* + P (g5585) = A/ 2+ 1 /3) (81 +
+ gy a) 1 (g — Ya ey + 8 - 8))® 4 (8 — aler + 82 + 89))* +
+ s —Ys(er+ e+ el =M /2+p/3) (L —p/p0)" 420D

1t is then found that

Li=Ly=Ly=M+2p)/pyy My=M,=Mz=u/po
Ni=Ny=N3=R}+n)/po

and the characteristic equation appears in the form

2
[or —2E® o g )] R N R e R S
This form of the characteristic equation is known from the linear theory of elasticity.

We now proceed to calculate the matrices Aij i.e., to obtain the Egs. (5.1). From Egs. {4.11) of Sec.

4 it follows that to calculate the AkJZ it is sufficient to calculaj:e the first and second derivatives of E with

respect to the deformation tensor components, namely, Egij, Eeij £k

We calculate the derivatives in the principal axes of the deformation tensor, i.e., for £gy= 049,
gijj=¢€jji’. Let €1 be the roots of the characteristic equation

831 —8 g €13
Ba1 Epp— 8 83 |=—(e—e){e—ey){e—gg)=0

€3 €3 €33 — &

We assume that none of the diagonal elements coincide. This restriction can be removed later by a
continuous extension of the equations for the AH_ tothe case of one multiplicity or another. We expand

ki
€4, E9, €3 In powers of e3;—€4i° (1 #13)

& = Biio + (sii - eiio) + 2[ a'lpqrsapqsrs + sl T8y + 61'.
p3Eq, rs

To caleulate ai)qrs we substitute this expansion into the characteristic equation

-6, 1 €13
891 899 — 831 — 61 893 = — 61 (322 - 311) (833 - 811) - (833 - 811) €19801 — (822 —_ 811) €13831 + A 0
31 g  Egg— 11— O;

The quantity 8 is of the second order of smallness and the terms discarded are of the fourth order
of smallness.

From this we have

8. = — €281  EimEa + . 212 €21 £13 31 |
t g2 —E&n e —en g22° — &n° g3 — en°
£ =8 813 €1 €13 €31
1 1 e22° —€11°  es° —E&n°
and, further,
dey . 1 ey . 0
denn * de,,

if, simultaneously, we do not have the condition p=1, g=1

% (2 . e 1 1
(@ey)* — 7' Gemdess 7 Oepdem B’ — &0 B — 8
0% 1 . i
de1z g5y Bu° —Em® | &1 — €
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All the remaining derivatives are calculated in an analogous way, being obtained by cyclically permu-
ting the subscripts.

As a result, we have

£ £ dg;
€nq o
0%, dg; Os;
Bepgtrs = Bes o+ Beeii - o
Esﬁ = Ezis E‘ii‘]‘j = Esisj
E e
Sijgji - si _ ( I
and all the remaining derivatives are zero.
We consider the parametrization
1 1 1
E=E(a,0:,03,8) =E S)
(@1, 85, a3, 5) Vi—2e  Vi—2e V1—2e

In terms of the @; the derivatives may be written

Egii = ai3Eai1 Es.ﬁtﬁ = aisajsEaiaj
E = aisEa i34 + SaisEa (5.3)
a; 3E J a
= 2a*a? ———-——1 Le#D

23—
45

Eiif i

E

€358 51
and all the remaining derivatives are zero.

The use of Eqs. (5.3) in Eqgs. (4¢.11) leads to the Eqs. (5.1) for the Ali{j in the coordinate system
chosen. Obtaining Eqgs. (5.2) from Egs. (5.1) is an elementary, even though somewhat involved, exercise
in permuting the variables. We shall not supply the details here.

6. Symmetric System of Equations of the First Order. In Sec. 4 it was shown how the equations of
elasticity theory can be reduced to the form (4.10).

This system can be rewritten as
d 2 . . 2u
(Tit‘) u_(A” + X9 5ams; Bla—x‘ =
el + 9 |

_, Inthis way of writing the equations we have introduced completely arbitrary skew-symmetric xli=
—-X1=—X1]*) matrices, concrete expressions for which are given later.

We introduce the new variables

wy duy /dt s G duy [ dx;
w=| w, dug/dt |, gi=| @z | =| s/ 0z;
w-_; du:; / dt q35 au:; / 6.1:,

and with their aid we rewrite the equations in the form of a first order system:

du/dt——w
(AlJ—l-X”)———B‘-——-—F
dq LI oo
—dT]—éz—if—anqm (=123
dvjdt =1

Instead of this system, it is convenient to consider the system obtained by replacing the equations in
the last two rows by linear combinations of them
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du/dt = w
dw ioxin g
H—(A]+X”)'a"£i"‘ B EﬂF
dg; " "
(4 + Xy BT (i Xy 22— @y (=1,2,9)
“ i
L 29y dv . 0w
In the last equation we have introduced yet another arbitrary matrix P; how it is to be selected will be

described later. If we introduce the vector of unknown functions

u
U 91
- Qs
Qs
v/
we can write the latter system in the following symmetric form;
I, 0 0 0 0o 0
0 I, 0 0 0 0
O 0 All A12 + XIZ A13 + X13 Bl au
0 0 A Xx=n A2 AL X pro i +
O 0 A81 + XSl A32 + X32 A33 B3
0 0 B R Be* P
10 0 0 0 0 0 w
0 0 - Ai1 - Xil - Aiz - Xiz . Ais___ Xi3_-_ Bi F
0 —4%—x" 0 0 0 0 v 6]
+ ) o= 1 6.1
0 —A"—Xx% 0 0 0o 0 | o, (6.1
0 —A%—X% 0 0 0 0 O,
0 — Bk 0 0 0 0 v

In order for this system to be a symmetric t-hyperbolic system in the Friedrichs sense, it is neces-
sary to choose the X1 and P so that the matrix coefficient of dU/ dt will be positive definite. It is not diffi-
cult to show that if the matrix

( All A12 + XZ'Z Bl3 + X13
) (6.2)

A2 + X21 A22 A23 + X23
ASI + X31 A32 + X32 A33

is positive definite, then. by choosing the matrix P to be "sufficiently large" (i.e., a positive definite P with
its least characterig{:ic value sufficiently large) we can assure positive definiteness of the entire matrix of
interest. For the X1 we take

Agd, I kB> i
0, if k=1l i=j

— Ay, <l i<
Xyttt =0

Xpbi =

With this choice of Xij the matrix (6.2) appears as follows in a system of coordinates with axes
directed along the principal axes of the deformation tensor:
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L, 0 0 0 N, 0 0 0 N,
0 e2hg 0 0 0 0 0 0 0
0 0 eaM, O 0 0 0 0 0
0 0 0 e?M; 0 0 0 0 0
Ns O 0 0 L, 0 0 0 Ny
0 0 0 0 0 eMM, O 0 0
0 0 0 0 0 0 e, 0 0
0 0 0 0 0 0 0 e 0
N, O 0 0 N, 0 0 0 L
The conditions for it to be positive definite are the following:
M, >0, M,>0, M;>0 (6.3)
Ly N3 N,
L, >0, L,L;—Ng#>0, Ns Ly Ny |{>0
Ny Ny Ly

These conditions represent restrictions on the equation of state
E=E(p,D,AYS)

It is interesting to note that these restrictions are more stringent than the conditions for hyperbolicity
of the system (4.10); finally, we note that they depend on the specific choice of the xij.

As we have already rémarked (see Sec. 5), in the case of the linear theory of elasticity

L1=L2=L3:(K+2P’)/Po
My =M= M;=p/p,
Ny=Ny;=Ng=(RA+p)/p,

The conditions (6.3) for positive definiteness then reduce to the inequalities

while the conditions for hyperbolicity are

It is noted in [16] that, as a rule, for all elastic media

B3>0, A0

We remark that the roots of the characteristic determinant of the system (6.1), namely,

QI 0 0 0 0 0
913 _ (A'il + X’I'.l) gi . (Aiz_l_ X12) gi . (At3 + X13) Ei . Bigi
_ (Ali + Xli) EQ (A11 + Xu) Q (A12 + X12) Q (Ala + X13) QR
. (Azi + Xzi) £.Q (A21 + le) Q (Azz + Xzz) Q (Azs + Xza) QOB
_ A3i+ Xsi Eig (A31+ X3 Q(Asz 4 X32) Q(A33 + Xaa) QB
( )
— Bi*E; QB QB QB3 QP
/A11+ X grgy xu A13+ X1 B
At —l—X” Az - X2 A23+ X238 B2
A%+ X3 A”—}— b & A”—}- X3 B
Bi* B2 B3% P /

co oo o

— QI8 det | Q21, — EE;A%| det

do not depend on the matrices Xij, Bi, P.
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